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China has experienced rapid urbanization and dramatic economic
growth since its reform process started in late 1978. In this article,
we present evidence for a significant urbanization effect on cli-
mate based on analysis of impacts of land-use changes on surface
temperature in southeast China, where rapid urbanization has
occurred. Our estimated warming of mean surface temperature of
0.05°C per decade attributable to urbanization is much larger than
previous estimates for other periods and locations. The spatial
pattern and magnitude of our estimate are consistent with those
of urbanization characterized by changes in the percentage of
urban population and in satellite-measured greenness.

Land-use changes from urbanization, creating an urban heat
island (UHI), have been suspected as partially being respon-

sible for the observed warming over land during the last few
decades because of (i) the observed decrease in the diurnal
temperature range (DTR) resulting from a larger increase or a
smaller decrease in minimum temperature relative to maximum
temperature and (ii) a lower rate of warming observed over the
past 20 years in the lower troposphere compared with the surface
(1). The area-weighted average warming effect of UHI over land
during the 20th century has been estimated to be �0.06°C per
century (1–4) globally and approximately 0.06�0.15°C per cen-
tury (5, 6) in the U.S. based on differences in temperature trends
between rural and urban stations. A much larger estimate of
0.27°C per century in the U.S. has been reported recently (7) by
comparing trends in observed and reanalysis surface tempera-
tures over the period from 1950 to 1999.

China has experienced rapid urbanization and dramatic eco-
nomic growth since its reform process started in late 1978. From
1978 to 2000, China’s gross domestic product grew at an average
annual rate of 9.5%, compared with 2.5% for developed coun-
tries and 5% for developing countries; the number of small towns
soared from 2,176 to 20,312, nearly double that of the world
average during this period; the number of cities increased
from 190 to 663; and the proportion of urban population rose
from 18% to 39% (see the Peopledaily article at http:��english.
peopledaily.com.cn�200111�27�eng20011127�85410.shtml and
the State Family Planning Commission of China web site at
www.sfpc.gov.cn�EN�enews20030320-1.htm). In this article, we
present evidence for a significant urbanization effect on climate
based on analysis of impacts of land-use changes on surface
temperature in southeast China, where most of China’s urban-
ization has occurred.

Data and Methods
The UHI effect has been estimated by comparing observed
temperatures in urban stations with those in their surrounding
rural stations, but such results largely depend on how rural versus
urban stations are classified and whether the data are homoge-
neous (7–9). Population data often are used to identify a station
as urban and rural, but such information generally is out-of-date,
and thus satellite measurements of night lights have been

substituted recently (8, 9). In situ observations suffer from
inhomogeneities caused by ‘‘nonclimatic’’ factors such as
changes in observation time, instrumentation, location (altitude
and latitude), and nonstandard siting (referred to as nonclimatic
effects hereafter) (9). These factors could introduce artifacts in
long-term observations and rural–urban differences and thus
may bias the estimate of UHI. For example, Peterson (9) found
no significant impact of UHI in the U.S. after the observed
temperature time series were adjusted for such inhomogeneities.
The lack of an UHI effect may be caused by micro- and
local-scale impacts overwhelming the mesoscale UHI. Industrial
sections of towns may well be significantly warmer than rural
sites are, but urban meteorological observations are more likely
to be made within cool ‘‘park islands’’ than in industrial regions
(9). Evidently, the UHI is more complex than usually considered.

Using rural–urban temperature differences to estimate the
impacts of urbanization on climate in China may be inappro-
priate for several reasons. First, most Chinese stations are
located in or near cities, with only a few in mountainous or
remote regions or on small islands. Although China is compa-
rable in size to the U.S., it has considerably fewer meteorological
stations, and each city generally has only one station. For
example, each of China’s two biggest cities, Beijing and Shang-
hai, has only one station available in the Chinese network. It is
impossible to find a corresponding rural station for most of the
urban ones, especially in eastern and southern China. Conse-
quently, if using the rural–urban difference to estimate the UHI,
one possibly is comparing temperature between two different
urban stations at regional scales or between two different regions
at large scales. Furthermore, adjusting spatial and temporal
homogeneities for in situ observations in China inadvertently
may sacrifice the UHI effect because the adjustments often are
performed by comparing a target station with its neighbors that
generally also are urban stations and are relatively far away.
Second, China’s rapid urbanization in the past two decades could
transfer a station from rural into urban in a very short period.
The continuous expansion in urban population and area makes
the classification of urban versus rural stations dynamic. Third,
Chinese cities have a much higher density of population and
urban buildings than do cities in most developed countries. Cities
in the U.S. extend many kilometers to suburban areas where
people reside and that can have as much vegetation as rural
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areas, whereas Chinese cities have a significantly higher density
of population, residential buildings, shopping malls, schools,
roads, etc., and much less vegetation than their neighboring rural
areas because people live within cities. These unique character-
istics could make the UHI effect more pronounced in China
than in other countries like the U.S. The first two sections of
Supporting Text, which is published as supporting information on
the PNAS web site, provide the details.

Kalnay and Cai (7) recently introduced a method to estimate
the impact of urbanization and other land-use changes on
climate by comparing trends in surface temperature recorded by
1,982 meteorological stations with those in the National Centers
for Environmental Prediction�National Center for Atmospheric
Research (NCEP�NCAR) Reanalysis (R-1) (10). The reanalysis
uses the most extensive observations available from a variety of
sources including ship, rawinsonde, pibal, aircraft, and satellite,
etc., to assimilate these data, with an assimilation system kept
unchanged, and has been widely used (10). The R-1 data are
influenced strongly by atmospheric vertical soundings of wind
and temperature, and surface temperatures are estimated from
the atmospheric values (surface observations of temperature,
moisture, and wind over land are not used) and thus are not
sensitive to changes in land surface (7, 10). Therefore, the
differences in surface temperature trends between the observed
and R-1 data are postulated to represent the impacts of urban-
ization and other land-use changes on climate (7).

This method assumes that the quality of R-1 surface air
temperatures is satisfactory. One known deficiency with R-1
data is its poor performance in the description of cloudiness and
surface moisture, which could bias the computation of the
surface energy budget and therefore surface air temperature (11,
12). Increased cloud cover is linked with the worldwide decline
in DTR, and increased soil moisture could reduce DTR through
enhanced evapotranspiration (11–13). Consequently, differ-
ences in clouds and soil moisture between observed and R-1 data
could contaminate the UHI estimate. The second deficiency
with R-1 data is its poor performance over mountainous regions
(7). The model of R-1 has a spatial resolution of 2.5° and thus
uses a land surface boundary that is smoother than reality. This
smoothing could introduce large biases in the model’s altitude or
land surface properties relative to the actual meteorological
stations and thus in the R-1 temperatures over mountainous
areas with varied topography. Trenberth (12) argues that the R-1
does not include effects of changing atmospheric composition
such as greenhouse gases and aerosols on radiative forcing.
However, the R-1 is able to capture the full strength of climate
trends in its observations because the reanalysis assimilates
atmospheric temperatures and other observations that are af-
fected by the greenhouse gases and aerosols (14). Peterson (9)
and Vose et al. (15) also pointed out that the lack of adjustments
for inhomogeneity caused by the nonclimatic effects in the
observational data may have introduced uncertainties in the
UHI estimate of Kalnay and Cai (7).

Here we adopt the method of Kalnay and Cai (7) to estimate
the impact of urbanization and other land-use changes on
climate in China but pay more attention to the aforementioned
problems. We use observed monthly mean daily maximum and
minimum land surface air temperatures at 671 meteorological
stations of the Chinese network for the period from January
1979 to December 1998, collected and processed by the National
Meteorological Center of the China Meteorological Adminis-
tration (16). We use the National Centers for Environmental
Prediction�Department of Energy (NCEP�DOE) Atmospheric
Model Intercomparison Project (AMIP)-II Reanalysis (R-2)
(11) covering 1979–present at spatial resolution of �1.9° instead
of R-1. R-2 data were provided by the National Oceanic and
Atmospheric Administration�Cooperative Institute for Re-
search in Environmental Sciences (NOAA�CIRES) Climate

Diagnostics Center (Boulder, CO) from www.cdc.noaa.gov. Al-
though based on the widely used R-1, the R-2 has improved its
quality by featuring newer physics and observed soil moisture
forcing and also by fixing known errors of R-1. For example, the
soil wetness evolution is treated completely differently in R-2
than in R-1, and a new cloudiness-relative humidity table is
generated to fix the errors in R-1. Consequently, the R-2 data
should more accurately characterize soil moisture, cloud, and
near surface temperature over land (11). To ensure the reliability
of R-2 data, we assess the performance of R-2 temperatures
relative to observational data and locate the regions and seasons
with the best consistency by considering China’s complex to-
pography and climate. To minimize the nonclimatic effects in the
observations, we use China’s original and homogeneity-adjusted
annual mean surface air temperature data (17) to assess the
magnitude of these effects across China and choose our study
region where such effects are minimal. Furthermore, we use
independent data sources from demography and remote sensing
to further confirm our results. Details about these procedures
can be found in the supporting information.

For each meteorological station, the maximum and minimum
temperatures in R-2 are interpolated to its location (longitude
and latitude) on the R-2 grid. We aggregate the R-2 data into
monthly mean values and calculate a monthly DTR by subtract-
ing the monthly mean minimums from the maximums for both
the observational and R-2 data. Monthly anomalies then are
calculated by removing the 20-year mean annual cycle. Linear
trends for both observed and R-2 data are estimated by using
ordinary least squares.

After carefully assessing the data quality, reliability, and
homogeneity for both observational and R-2 data, we focus our
study on 13 provinces and municipalities in southeast China
(20°N–36°N, 102°E–123°E) that consist of 194 spatially well
distributed stations, representing an area where most of China’s
urbanization has occurred (18, 19). This region has (i) the highest
meteorological station density; (ii) the most uniform station
distribution; (iii) the minimal nonclimatic effects; and (iv) the
best consistency between observations and R-2 data in China.
The details are described in the supporting information.

Fig. 1 shows time series of monthly temperature anomalies for
Shenzhen, a city with the fastest population growth in China
from �0.1 million in 1982 to �7 million in 2000. The R-2 data
are consistent with meteorological observations, with a corre-
lation coefficient of 0.78 and 0.85 for maximum and minimum
temperatures, respectively. The minimum temperature in the
meteorological data has a larger warming trend than the max-
imum does, and so DTR decreases (�0.62°C per decade). This
change is consistent with commonly reported UHI (20, 21),
which has the greatest effect on the minimum temperature. In
contrast, the R-2 DTR shows a small increase (0.09°C per
decade), suggesting a lower sensitivity to urbanization. There-
fore, the observed minus R-2 temperature trends can be largely
attributed to urbanization and other land-use changes (7, 14).

To estimate the overall trends over our study region, we
average all stations, giving each equal weight because of their
uniform distribution in space. Because the R-2 data show the
best quality relative to the observational data during winter
months (December–February), which is also the season when
the cloudiness and soil moisture effects on UHI are minimal both
for the R-2 and observations (see more in the supporting
information), results in the winter months are show below.

For further information on data, procedures, and results for
other seasons, see Supporting Text, Tables 1–3, and Figs. 6–15,
which are published as supporting information on the PNAS web
site.
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Results and Discussion
Trends for winter maximum and minimum temperatures and
DTR in the observations are shown in Fig. 2. On average, the
observed maximum and minimum temperatures increase by
0.352°C and 0.548°C per decade, respectively, and the DTR
decreases by 0.195°C per decade. The daily minimum rises faster
than the daily maximum, with the largest increase in the northern
and eastern areas of the study region. Consequently, the DTR
declines at a majority of stations, with the largest decrease in the
eastern and southern coastal areas where rapid urbanization has
occurred (18, 19).

Fig. 3 shows how much of the above observed temperature
changes can be attributed to urbanization and other land-use
changes. The average differences in maximum and minimum
temperature trends between observed and R-2 data are �0.016
and 0.116°C per decade, respectively. The difference in DTR
trend is �0.132°C per decade, which is 68% of the observed DTR
trend (�0.195°C per decade). The decrease of DTR is greatest
in the Yangtze and Pearl River deltas and generally is larger at
coastal stations. Note that most Chinese stations are located in
or near cities. The spatial pattern and magnitude of changes in
the DTR generally are consistent with several indicators for
urbanization (e.g., number of towns and cities, urban population,
rural–urban migrants, rural laborers transferred to nonagricul-
tural sectors, rural–urban income, and per capita gross domestic
product) (19). Consequently, we attribute most of the changes
shown in Fig. 3 to urbanization.

The DTR is particularly susceptible to urban effect (1). If
urbanization is responsible for the reduction in DTR, changes in
DTR (Fig. 3c) should be correlated with factors known to affect
urbanization. The percentage of urban population to the total
population (referred to as percentage urban hereafter) has been

used as the most important determinant of urbanization in China
(19). We use China’s fourth (1990) and fifth (2000) census data
(22) to measure the changes in percentage urban. The DTR
trends are aggregated to the provincial level because data at
station level are not available to us. Fig. 4a shows a statistically
significant negative correlation (�0.77, p � 0.01) between
changes in DTR and those in percentage urban. Areas with the
greatest increase in percentage urban have the largest reduction
in DTR.

Changes in satellite-measured greenness are another indicator
of urbanization. Vegetation greenness indices such as the nor-
malized difference vegetation index (NDVI) use red and near-
infrared solar radiation reflected back to sensors aboard satel-
lites to signal energy absorption by leaf pigments such as
chlorophyll (23). Reflectances for vegetated and urban surfaces
differ greatly, and so decreases in NDVI indicate the occurrence
of less vegetation. Such decreases should be most pronounced
and thus best seen during summer, when vegetation peaks, and
become smallest during winter, when the bare soil fraction is
largest because urban surfaces are similar to bare soil in their
reflectance spectrum. Therefore, we estimate summer NDVI
trends for each station with an 8-km resolution data set (23) from
1982 to 1998 as we did for the R-2 data.

The spatial pattern and magnitude of summer NDVI trends
(Fig. 5) are generally consistent with those in temperatures (Fig.
3) and land use in China. Satellite greenness decreases substan-

Fig. 1. Monthly temperature anomalies in the observational and R-2 data for
Shenzhen, a city with the fastest population growth in China, from January
1979 to December 1998: maximum (a), minimum (b), and DTR (c). A 3-month
smoothing is applied. The correlation coefficient between the two data sets
(without smoothing) is shown.

Fig. 2. Observed winter temperature trends (in °C per decade) over south-
east China from 1979 to 1998: maximum (a), minimum (b), and DTR (c).
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tially over the eastern and southern provinces but increases over
the important agricultural areas of northern and western prov-
inces (30°N–35°N). Variations in NDVI exhibit the greatest
association with the UHI effect for minimum temperature (see
Table 3), as shown in Gallo and Owen (8). The correlation
coefficients between changes in NDVI and the observed minus
R-2 minimum temperature trends are �0.30 (p � 0.01, sample �
194) at station level and �0.67 (p � 0.05, sample � 13; Fig. 4b)
at provincial level.

Use of remote sensing data for detecting urbanization gen-
erally requires fine-resolution (�1 km) imagery (24). Note that
the size of NDVI pixel (64 km2) used in this study is coarse
relative to that of most cities, especially in the agricultural region.
The observed NDVI changes may contain signals other than
urbanization, which could vary by station depending on its
location relative to the center of NDVI pixel. Hence, the
correlation at provincial level may be more representative of
urbanization than that at station level because the regional
average could reduce uncertainty.

Although a substantial conversion from arable land into
built-up areas was identified (25), the observed NDVI increase
in 30°N–35°N (Fig. 5) may reflect the climatic effects of both
urbanization and increased agricultural planting around the
cities, because a substantial rise in crop yield has been reported
attributable to increased irrigation and fertilizer application
from 1982 to 1999 (26) over this agricultural region. Such an

increase over urban areas coincides with the decline in maximum
and minimum temperatures (Fig. 3), suggesting a cooling urban
effect caused by enhanced evapotranspiration (4, 27). Appar-
ently, the UHI is very complicated and site-dependent.

We also calculate the correlation coefficients like Fig. 4 a and
b for other seasons and find that winter is the most reliable
season to estimate the UHI effect in China (see more in the
supporting information), consistent with (i) the relationship
between changes in DTR and those in percentage urban, (ii) the
relationship between trends in minimum temperature and those
in NDVI, and (iii) the seasonal variations of the R-2 data quality
relative to the observational data. Our results also are consistent
with the UHI mechanisms (20, 21). Urban and rural areas may
differ in cloud cover and rainfall, and this difference should be
largest in summer, especially for a marked monsoon climate
country like China. Therefore, the UHI should be expected more
visible in winter than in summer when both clouds�rainfall and
UHI decrease DTR and thus cannot be differentiated in the
observations.

The impact of urbanization on climate over our study region
is computed by using the observed minus R-2 trend for mean

Fig. 3. Observed minus R-2 winter temperature trends (in °C per decade) in
southeast China from 1979 to 1998: maximum (a), minimum (b), and DTR (c).

Fig. 4. Relationship for the DTR trends (in °C per decade; Fig. 3c) versus the
increases in percentage urban (a) and the minimum temperature trends (in °C
per decade; Fig. 3b) versus summer greenness trends (per decade; Fig. 5) at
provincial level (b). The correlation coefficients and their significance level are
shown. The dashed line represents a least-squares fit.

Fig. 5. Summer NDVI trends per decade from 1982 to 1998.
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winter surface temperature averaged from the maximum and
minimum values. Our estimated warming of mean surface
temperature of 0.05°C per decade is much larger than previous
estimates (1–7) for other periods and locations, including the
estimate of 0.027°C for the continental U.S. (7). A recent study
by Li et al. (28) finds that most temperature time series in China
are affected by UHI, and they estimated the UHI over our study
region of �0.011°C per decade based on analyses of the rural–
urban differences in annual mean temperature for the period of
1951–2001. Because the present analysis is from the winter
season over a period of rapid urbanization and for a country with
a much higher population density, we expect our results to give
higher values than those estimated in other locations and over
longer periods. Therefore, our estimates do not represent the
urbanization effect globally, nor do they represent the average of
all seasons over the past 100 years for which station temperature
data are available.

Some uncertainties may still remain in our estimates, such as
the previously discussed nonclimatic effects. To estimate such
effects over our study region, we use the original and homoge-
neity-adjusted annual mean temperature data (28) to compute

the difference in temperature trend before and after the adjust-
ments (see more in the supporting information). The regional
average difference is 0.002°C per decade, indicating a minimal
effect on our estimated UHI. Considering the complexity of the
UHI that involves many nonurban impacts, such as incomplete
adjustments of data inhomogeneity (9, 15), clouds (4, 13),
aerosols (29) (which are largest during spring), and changes in
solar radiation and insolation duration (30, 31), our results
should be interpreted as illustrative rather than definitive.
However, this study draws attention to an important issue that
requires further investigation. We need to better characterize the
system with observations and better describe and model the
complex processes involved. This article is a first step in the
development of a quantitative basis for assessing the conse-
quences from temperature of land-use change associated with
Chinese urbanization.
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